
Appears in Fourteenth IEEE Automated Software Engineering Conference (ASE-99), October 1999. pp 63-72
Best paper award.

Automatic Generation of Test Oracles
- From Pilot Studies to Application

Martin S. Feather Ben Smith
Jet Propulsion Laboratory, Jet Propulsion Laboratory,

California Institute of Technology California Institute of Technology
4800 Oak Grove Drive 4800 Oak Grove Drive

Pasadena, CA 91109, USA Pasadena, CA 91109, USA
+1 818 354 1194 +1 818 353 5371

Martin.S.Feather@Jpl.Nasa.Gov Ben.D.Smith@Jpl.Nasa.Gov

Abstract
There is a trend towards the increased use of automation
in V&V. Automation can yield savings in time and effort.
For critical systems, where thorough V&V is required,
these savings can be substantial.
We describe a progression from pilot studies to
development and use of V&V automation. We used pilot
studies to ascertain opportunities for, and suitability of,
automating various analyses whose results would
contribute to V&V. These studies culminated in the
development of an automatic generator of automated test
oracles. This was then applied and extended in the course
of testing an AI planning system that is a key component
of an autonomous spacecraft.
Keywords: Test Oracles, Verification and Validation,
Analysis, Planning, NASA

1. Introduction

Cost, performance and functionality concerns are
driving a trend towards use of self-sufficient autonomous
systems in place of human-controlled mechanisms.
Verification and validation (V&V) of such systems is
particularly crucial given that they will operate for long
periods with little or no human supervision.  Furthermore,
V&V must itself be done at low cost, rapidly and
effectively, even as the systems to which it is applied
grow in complexity and sophistication.

Spacecraft – especially deep space probes – exemplify
these concerns. We have been involved in V&V of an AI
planner that is a key component of a spacecraft’s
autonomous control system. In [8] we report our use of an
automated generator of automated test oracles to support
these V&V activities. The paper is organized to show the
progression of steps we followed leading up to this
application, and the lessons we have learnt by reflecting

upon our experience:
• First pilot study: rapid automated analysis (Section 2).

In this study we determined the viability of a rapid
analysis approach. We did case studies of two kinds of
traditional design information, yielding confirmation of
the viability of the analysis method for this kind of
information.

• Second pilot study: application to an autonomous
planner (Section 3). We needed this second study to
determine suitability of the rapid analysis approach to,
specifically, checking plans generated by an AI planner.
Particular concerns were scalability of the approach, and
investment of domain experts’ time. The pilot study
produced instances of automatic test oracles.

• Development of automated generator of planner test
oracles (Section 4). Based on the lessons learned from
the second pilot study, we committed to developing a
tool to be used in actual spacecraft testing. The tool
would go beyond the capabilities of the second pilot
study by both extending aspects of the analyses
performed, and automating the generation of the test
oracles themselves.

• Application to V&V of spacecraft planner (Section
5). We applied the tool during spacecraft planner testing.
Using it, we checked thousands of test cases for
adherence to hundreds of flight rules. Additionally, we
extended it to perform additional validation checks of
particularly complex rules.

• Lessons learned (Section 6). We describe lessons
learned for both software engineering and V&V:

• Our experience re-iterates several well-
understood virtues of pilot studies as a precursor
to actual development.

• When domain experts’ time is a critical resource,
follow an "on-demand" policy of knowledge
acquisition.

• V&V can make good use of redundancy and



rationale, to increase assurance in the V&V
results, and to assist in the development of the
V&V technology itself.

• The use of a database as the underlying analysis
engine has practical applications and benefits.

• Test oracles should yield results with far more
content and structure than simply “passed” or
“failed”.

• Translation between notations is a recurring
need, and ideally should be done in such a way
as to support understanding, specification and
maintenance by domain experts.

• Conclusions (Section 7). We summarize the
relationship of our work to other efforts, and point to
areas we believe are worthy of additional attention.

• Further details of the second pilot study (Appendix
A).

• Further details of the development (Appendix B).

2. First pilot study: rapid automated
analysis

The first stage was a pilot study that investigated
analysis of simple properties of spacecraft designs. This
was conducted in early 1997, primarily by the first author
who, while not an expert in spacecraft, had access to
spacecraft design documents and spacecraft experts. The
purpose of this first study was to answer the following
question:

Could simple analyses of spacecraft design
information be performed rapidly by using a
database as the underlying reasoning engine?

The approach under investigation was founded upon
the use of a database as the underlying reasoning engine.
We used AP5 [3], a research-quality advanced database
tool developed at the University of Southern California.
The architecture of this approach is shown in Figure 1. Its
four main steps were:
1. Manual creation of a database schema to represent the

design information.

2. Loading the design information into the database.
This was made a predominantly automated operation, by
constructing special-purpose programs to extract
information from design documents and translate into
the format of the database schema. Automation made the
approach practical for handling voluminous amounts of
design information.

3. Determining V&V conditions and expressing them as
database queries.

4. Analysis, performed by evaluating the V&V
conditions as database queries against the data. The
reporting of the query results was organized into
confirmations and anomaly reports
The pilot study examined two sets of design documents

– interface diagrams (i.e., summaries of incoming and
outgoing connections of software modules) and test logs
(i.e., traces of behaviors generated in testing of the
software components in simulations). Modest verification
conditions were rapidly and successfully analyzed in this
manner.

2.1. Conclusions drawn from first pilot study

Overall, the pilot study answered its original question
affirmatively.
• The database could readily be used to represent

existing design information, and populating the
database with that information could be automated with
little effort.

• Database queries could be used to perform simple
analyses. The creation of these queries was a relatively
straightforward, albeit manual, task.

• The efficiency of the database was sufficient for the
volume of information dealt with in these pilot studies.
However, questions remained about the scalability of
the approach. In particular, checking properties of very
large log files was anticipated to require a more
efficient encoding of those properties. A state-machine

based approach, e.g., [2] or [5] would
perhaps be more appropriate in such
circumstances.

For further details see [7].

3. Second pilot study: V& V of
an autonomous planner

The need arose to perform V&V of
autonomous spacecraft control systems.
The rapid analysis approach of the first
pilot study was identified as having
potential application here. A second pilot
study was conducted to investigate this
potential. This section provides some
background on the autonomous spacecraft,
and then summarizes the study.

DESIGN
DOCUMENT

DATABASE

design
information

Data

2. Automatic, or
semi-automatic
loading of
database

Database queries

V&V conditions

3. Manual
translation

Database schema

Query results (confirmations or anomalies)

4. Automatic analysis

Figure 1 – Architecture of First Pilot Study

1. Manually created



3.1 An Autonomous Spacecraft

NASA’s “New Millennium” series of spacecraft is
intended to evaluate promising new technologies and
instruments. The first of these, “Deep Space 1” (DS1) [6],
was launched in 1998. Increased autonomy is one of
several innovative goals that DS-1 will demonstrate [12].
The “Remote Agent” [10, 11] will be the first artificial
intelligence-based autonomy architecture to reside in the
flight processor of a spacecraft and control it for 6 days
without ground intervention. The Remote Agent achieves
its high level of autonomy by using an architecture with
three key modules:
• an integrated planning and scheduling system that

generates sequences of actions (plans) from high-
level goals,

• a intelligent executive that carries out those actions
and can respond to execution time anomalies, and

• a model-based identification and recovery system that
identifies faults and suggests repair strategies.

The planner is a critical component of the autonomy
architecture. The command sequences generated by the
planner direct navigation, attitude control, power
allocation, etc. The entire mission could be jeopardized by
an error in a command sequence pertaining to any of these
areas. For example, the June 1998 loss of contact with the
Solar and Heliospheric Observatory (SOHO) spacecraft is
believed to have involved "errors in preprogrammed
command sequences" [15] (fortunately, contact has since
been re-established).

3.2. Automated Verification of Plans’ Temporal
Constraints

The rapid analysis approach of the first pilot study was
identified as having potential application to V&V of DS-
1's planner. However, the first pilot study had examined
traditional design information (interface diagrams and test
logs), so there was uncertainty as to
whether the same approach would
work for the planner's output (i.e.,
plans).

A second concern was motivated
by the critical resource of planner
experts' time. The first author, who
was not a planner expert, had done
the V&V research. Development of
an automated plan checker would
clearly require some investment of
time by the planner experts - but
how much?

 A pilot study to investigate this
potential was conducted. It sought to
answer two questions:

Could the database-
based analysis approach be

rapidly applied to automate checking the
planner's generated plans against its temporal
constraints?

Could this be done without a large
investment of time by planner experts?

We entered into this study with a reasonable
expectation of success. The planner has to be able to
generate plans; its constraint language is crafted to
simultaneously ease the expression of certain constraints,
and limit the form of expression to those that it can readily
handle. Conversely, the database only has to be able to
evaluate queries about a specific set of data, a far easier
task than the search-intensive task of planning. The
database query language is an extensible, general-purpose
language and so should be capable of straightforwardly
expressing the planner’s constraints. The relative
computational simplicity of checking vs. planning (an
instance of Blum's notion of "simple checker" [16]) also
suggested that the development of a sufficiently efficient
checker would not itself become a large development
effort.

Figure 2 shows the architecture of the approach
followed in this second pilot study.

As before, it is organized into four main stages:
1. Creation of database schema to represent the plan’s

activities. This was confirmed to be a straightforward,
manual task.

2. Loading the database with plan activities. This was
made a completely automatic step in this pilot study.
The amount of effort to do this was small, in part
because both planner and database happened to be
implemented in the same programming language
(Common Lisp). Had there not been this fortuitous
coincidence of a common implementation language, it
would have been necessary to develop code to parse
and translate between linguistic forms. At worst, this
would have been a modest standard programming
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task.

3. Translation of constraints. Representative planner
constraints were selected for hand-translation into the
equivalent database queries. The study revealed
translation to be feasible, although a somewhat
detailed process (see Appendix A).

4. Analysis. As before, analysis was automatic, yielding
reports of confirmations and anomalies. Importantly,
this study confirmed that the database approach
scaled sufficiently well to efficiently analyze
representative plans. (The study used actual plans
produced during test runs of the DS-1 planner.)

3.3. Conclusions drawn from second pilot study

The study answered affirmatively its first question. It
demonstrated the feasibility of automating checking of
plans. This was recognized to be an onerous task to
perform manually, and yet thorough checking of plans
dictated that it be done (for more discussion of the
rationale, see [8]).

The second question was also answered affirmatively.
Interestingly, while the amount of time expended by
planner experts on this task remained well below that
expended by V&V expert, it was noticeably higher than
had been the case for the first pilot study. Generally, we
attributed this to the need to delve into more application-
specific details, resulting in the need for more coaching of
the V&V tool expert by the spacecraft planner experts.

Illustrations and further discussion are presented in
Appendix A.

4. Development of analysis tool

The success of the second pilot study led to the next phase
– a commitment to develop an analysis tool that would be
used during testing of the planner by the planner experts
themselves. While this might appear to be just a small
extension of the previous
phase, there were several
important ramifications of this
transition from pilot study to
actual development:

• Reliance upon the result:
The pilot shadowed the
actual spacecraft
development effort, but did
not promise to yield results
upon which that development
effort would rely. Indeed, a
valid result of the pilot study
could have been that the
approach was infeasible. In
contrast, this phase
committed to the

development of a tool that the project would rely upon
during testing.
The positive results of the pilot studies were necessary
precursors to this commitment. Additionally, our
realization that the analyzer employed an extensible,
general-purpose language gave us a justification of why
we could extrapolate those positive results to the entire
planner constraint language.

• Developer and end-user different people: The pilot
study tools were developed primarily by the V&V
expert, and used by that same person. In contrast, this
phase committed to the development of a tool that would
be applied by the planner experts with little, if any,
involvement of the V&V expert during use.
This motivated two extensions to the approach
demonstrated in the second pilot study: (i) automating
the translation from planner constraints into database
queries, and (ii) rendering the outputs of the analysis
step in terms understandable by the planning experts.

• End-user agenda: the DS-1 planner experts
constructed an agenda of capabilities they desired of the
to-be-developed tool. This featured a prioritized list of
capabilities, such that the capabilities to be developed
sooner would be the ones they predicted would be of
more value to them.
The preceding pilot studies had helped by providing
illustrations of the kinds of analyses that could be
accomplished employing this approach. The fact that
those illustrations were in terms of DS-1 specific
information contributed to their (the planner experts)
ability to see its potential. They were thus able to
formulate an agenda at this stage, supplanting what was
previously the V&V tool expert’s guess as to what
analyses might be interesting and/or valuable.

The architecture of the system developed in this phase
is shown in Figure 3. For the remainder of this paper we
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will refer to this system as the “planchecker”. It has the
same stages as the second pilot study, but with some
additional capabilities:
• Additional analyses: the planner experts asked for

further analyses beyond temporal constraints, notably
typechecking of plan elements, and cross-checking of
plan activities against their rationale (information on
which is included in the generated plans). These
required loading additional information from plans into
the database, and development of additional database
queries.

• Automatic translation:  there were over 200
temporal planner constraints (counting each lowest-level
clause as one constraint). Based on the observations of
the second pilot study, we recognized that manual
translation of the whole set would be a tedious task.
Worse yet, we expected the set of planner constraints to
grow and change over time. In keeping with our overall
goal of judicious use of automation, it was decided build
an automatic translator that would take any constraint
expressible in the planner language and generate the
equivalent database query.

• Extended output: the planner experts wanted the
query results to report more than simply “OK” when a
plan passed the checks. In essence, they wanted a
justification for why a temporal constraint was satisfied.
For example, a constraint that says every SEP-thrusting
interval is followed by an SEP-idle interval would be
justified by listing, for each SEP-thrusting interval, the
specific SEP-idle interval found to satisfy the constraint.

• Coverage analysis: the planner experts also wanted
to know which of the planner constraints had been
exercised in the plan. For example, only plans that
involved intervals of SEP thrusting would exercise a
constraint of the form “every thrusting interval must
…”.

4.1. Insights gained from development experience

The development effort did indeed culminate in the

planchecker tool (use of which is discussed in the next
section). We therefore confirmed the validity of the
conclusions drawn from the second pilot study. We also
gained some further insights. These fell into two key
areas:
• The second pilot study had suggested that the

translation from planner constraints to database queries
would be straightforward. In practice, automating the
translation of the full planner language turned out to be
more complex than the pilot study had indicated (see
Appendix B for examples). While a procedural approach
to programming the planchecker’s translator sufficed to
meet the development goals, we concluded that
translation warrants further attention. We will return to
this in Section 6, Lessons Learned.

• In practice, testers need analysis results with more
content and structure than simply “pass” or “fail”.
Again, details can be found in Appendix B, and
discussion is deferred to Section 6. Lessons Learned.

5. Use of analysis tool

The planchecker was used by the second author (a
planning expert) during testing. Interaction with the V&V
expert was not required during this phase.

The planchecker was applied to check each plan
generated. Its results were accumulated alongside other
statistics about the plan generation, e.g., how long it took
to generate the plan, how much memory was required to
do so. It was easy to apply in “batch mode” to a whole
series of plans. It was tolerably efficient, taking on the
order of 2 minutes to complete the checking of a typical
plan.

Over the course of use, several sets of changes were
made to the planner constraints. Re-translating the entire
set of constraints, to generate a new instance of the test
oracles, easily accommodated these changes. On these
occasions the V&V tool expert was on hand. The re-
translations went smoothly, with only one instance of the
need to step in and make a corrective modification. There
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were even changes to the plan format, in response to
which the V&V tool expert had to (manually) adjust the
corresponding portions of the planchecker system.

The second author (a spacecraft planner expert)
extended the planchecker in a particularly interesting
manner. On occasion, the writers of planner constraints
had found it necessary to manually decompose a fairly
obvious constraint that they want the plans to exhibit into
a set of constraints that the planner would accept, and that
in combination would achieve the original constraint. The
need to do this stemmed from the limited forms of
expression allowed in the planner constraint language.
Because the database query language was not so tightly
constrained, it was often possible to hand-express the
original constraint into a single database query. This could
then be applied to automatically check plans. Doing so
gives increased confidence in the validity of their manual
translation of the original constraint into multiple planner
constraints. Figure 4 shows the architecture of this
extended use of the planchecker.

The implications of this are twofold: (1) a planner
expert was able to master the use of the database language
and the special-purpose constructs added to represent and
reason about plans. Seeing familiar examples (translations
of the standard constraints) helped in achieving this level
of understanding. (2) the planchecker architecture
facilitates such extensions – specifically, automatic
loading of plans into the database, and automatic
evaluation of database queries, can both be reused. (Of
course, the translator from planner constraint language
could not be reused, because the original constraints were
not expressible in that language.) The net result is extra
validation at the cost of very little extra time and effort.

6. Lessons learned

The lessons we draw from this experience are
presented next, beginning with those related to general
software engineering principles, followed by those
specific to V&V.
Software Engineering Lesson 1: Pilot Studies

Our experience re-iterates several well-understood
virtues of pilot studies as a precursor to actual
development.

Pilot studies provide evidence of feasibility, serve as
prototypes and yield examples, which inspire suggestions
for extensions, further applications, etc.

In addition, we found it useful to formulate a
justification of why the pilot study approach would extend
to the full problem. Such a justification nicely
complemented the evidence provided by the pilot studies’
specific cases.
Software Engineering Lesson 2: "On-Demand"
Knowledge Acquisition

When domain experts’ time is a critical resource,

follow an "on-demand" policy of knowledge acquisition.
At the start of the project the V&V expert lacked a

complete and fully documented specification of the task
(i.e., plans and the planner language). Furthermore, the
domain experts’ time was very limited. In response, we
followed an “on demand” approach to knowledge
acquisition, where the V&V expert would proceed as far
as possible before making the next enquiry of the planner
experts. This made good use of the planner experts’
limited time and availability, since it kept the sum total of
their time small, consumed it in small chunks, and could
be done asynchronously (e.g., via email exchanges,
supplemented by brief telephone calls).

We benefited from the existence of numerous sample
inputs (plans and planner constraints). Also, the nature of
the task clearly circumscribed the areas that the analysis
expert would have to master.

We found it useful to work from an example plan that a
planner expert had already vetted as being correct. If the
planchecker reported faults with such a plan, the V&V
expert would know that most likely there was an error in
his own understanding, or his coding of the planchecker
itself.  Any remaining anomaly that the V&V expert could
not resolve would then be a plausible candidate for a
genuine plan anomaly, something the plan expert was very
interested in!
V&V Lesson 1: Encourage and Use Redundancy
and Rationale

V&V can make good use of redundancy and rationale,
to increase assurance in the V&V results, and to assist in
the development of the V&V technology itself.

Each plan generated by the spacecraft planner contains
both a schedule of activities, and a rationale relating those
activities to the constraints taken into account in their
planning. Checking both of these might appear redundant
– surely what really matters is whether or not a plan
satisfies all the constraints. Nevertheless, we found this
redundancy to be useful in two ways:
1. The planner experts gained additional assurance that

their generated plans were correct, in particular, that
they generated the “right” results “for the right reasons.”

2. The V&V tool expert made use of the redundancy to
extend (and debug) his understanding of the task. Every
constraint that the planchecker identified as being
involved had to be identified in the plan’s rationale, thus
forcing the planchecker to be complete and correct in its
treatment of rationales. Likewise, every constraint
mentioned in the rationale had to be seen to be involved
by the planchecker, thus forcing the planchecker to be
complete and correct in its treatment of constraints. This
helps assure that the planchecker is not reporting “false
positives” (plans judged as correct which are actually
incorrect). [2] describes false positives as more serious
than false negatives. He suggests “…a thorough system
of document reviews …can mitigate the risk of these



false positives.” Our experience indicates that machine-
generated rationale can provide a basis for automating
some of this review process.

V&V Lesson 2: Database-based Analysis
The use of a database as the underlying analysis

engine has practical applications and benefits.
Based on the first of our pilot studies we had made the

argument that database-based analysis was suited to
“lightweight” V&V [7]. The success of this whole effort
strengthens our belief in this position, and highlights some
further benefits.

The database approach suggests a natural
decomposition of the problem into: translating the V&V
conditions into database queries, loading the data into the
database, performing the analyses, and generating the
reports. This simple architecture nicely separates the key
steps. For example, in response to a change in format of
plan structures it sufficed to modify the planchecker’s
database loading portion. Also, this architecture facilitated
the planner experts’ extended use of the planchecker (i.e.,
their checking of complex conceptual constraints by
manually expressing them as database queries).

The database itself is used as intermediary between
analysis and report generation steps. The planchecker
places analysis results back into the database, alongside
the original data (plans) from which those results are
derived. Thus the report generation phase has uniform and
simultaneous access to both kinds of data regardless of
source, considerably facilitating the report generation task.
V&V Lesson 3: Analysis Results Need Structure

Test oracles should yield results with far more content
and structure than simply “passed” or “failed”.

During the pilot studies it had sufficed to yield analysis
results with trivial structure – they reported either that the
object had “passed” the analysis test, or had “failed due
to….” (with some simple distinctions among failure
cases).

The planchecker development entailed the generation
of analysis results and reports with considerably more
structure to both the “passed” and “failed” cases. For
example, reports that identified which constraints had been
exercised by a plan, and that distinguished how constraints
had been satisfied: those that were wholly satisfied by the
plan, those that deferred some condition to activities
beyond the plan’s horizons, etc.

We suspect that there may be general principles by
which test oracles can be built to yield such structured
analysis results, an area we think is worthy of further
attention.
V&V Lesson 4: Translation is the key

Translation between notations is a recurring need, and
ideally should be done in such a way as to support
understanding, specification and maintenance by domain
experts.

The planchecker, and the pilot studies that preceded it,

made extensive use of translation between notations. For
example, the loading of a plan into the database was a
simple translation from plan format into database schema
format.

In the pilot studies, it sufficed to perform these
translations manually, or to develop procedural-style code
to automate the translation. In development of the
planchecker, translation from planner constraint language
to database query language was also programmed
procedurally, but, because of the complexity of this
translation, this had some untoward consequences.
Notably, the procedural code was hard to understand and
maintain.

We believe that for translation of this complexity, a
more declarative style would be superior. In one such
approach, translation would be expressed as a set of
translation rules, executed by a general-purpose rule
engine (e.g., POPART [17]). We would hope that such
translation rules are readily created, understood and
maintained.

A desirable objective is that planner experts, guided by
the translations of their planner constraint language, would
readily see how to use and write additional translations.
Perhaps they could even go on to use the same approach
to extend the planner constraint language itself, i.e., to
automatically translate the formal expression of a
conceptual constraint into the set of simpler constraints
that the planner language currently accepts.

We are currently pursuing approaches to development
and use of translators. The planchecker’s translation will
serve as a challenge problem for this effort.

7. Conclusions

Our work follows the trend towards the use of
automation for generation of test automation. For
example, [14] presents an approach to generating test
oracles from specifications. [9] present an industrial
application feasibility study on automatically constructing
testing software for safety properties. Efficiency (and
therefore scalability) of the test oracles themselves is a
dominant concern in much of the related work.
Commonly, safety properties (typically expressed in some
form of temporal logic) are turned into finite state
machines whose construction ensures their efficiency of
execution (e.g., [5]). For our particular application, the
efficiency of the test oracles did not turn out to be a
driving concern. Our database-based approach to analysis
sufficed. More important to us was the investment of
effort that would be required of our domain experts,
whose time was in short supply. This led us to automate
the generation of test oracles from a domain-specific
representation. Thus the domain experts’ effort it would
take to construct that generator became out dominant
concern. Approaches that could reduce this kind of effort
include the parameterized tableaus [4], or the algebraic-



signature based mappings of [13]. We found, however, the
need to yield needed test results with finer distinctions
than simply “passed” or “failed.” Information about
“passed” cases was useful to for test coverage analysis,
and for ascertaining that the test had been passed “for the
right reasons”. Information about “failed” cases was
useful to locate the relevant portions of the plan
contributing to those failures, and so speed the domain
expert in debugging what was going wrong in the planner.

We are not aware of work on automatic generation of
test oracles that supports this capability. Based on our
practical experience of application of test oracle
generation, we see the need for further investigation of
this area.
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Appendix A - Details of the second pilot study
A.1. Example of planner constraint

The following example of one of the simpler plan
constraints, as expressed in the planner’s special purpose
language, will convey a feel for the challenges faced in
this pilot study:
( Define_Compatibility

 ;; Idle_Segment
 (SINGL E ( (SEP_Schedule SEP_Schedule_SV))

          (Idle_Segment))
    :duration_bound s [ 1 _plus_infinity_]
 :compatibility_spec
 (AND
  ; ; T hrust and Idl e s egments mus t a ll

meet--n o g aps
  (meets
   (SINGLE

     ((SEP_Schedule SEP_Schedule_SV))
  (Thrust_Segment (?_any_value_

                         ?_any_value_)))))



  (met_by (SINGLE
      ((SEP_Schedule SEP_Schedule_SV))

    ((Thrust_Segmen t ( ?_any_value_
                      ?_any_value_)))))))

This illustrates several areas where knowledge held by
the planner experts had to be acquired by the V&V expert:
• Overall application domain knowledge: “SEP” is an

acronym for “Solar Electric Propulsion,” the innovative
engine that provides thrust to DS-1. “Thrust ” and
“ Idle ” are the two main states this engine can be in.
Knowledge such as this of the spacecraft domain
provided useful intuition to the V&V expert, and this
second pilot study warranted a deeper level of
understanding than had been necessary for the first pilot
study.

• Problem-specific terminology: “SINGLE” has a
connotation specific to DS-1’s planner. It introduces a
description that matches a single interval. (One
alternatives is “MULTIPLE,” introducing a description
that matches a contiguous sequence of intervals).

• Terminological variants: The overall definition is of
a “compatibility.” The V&V expert preferred to think of
this as a “constraint,” in keeping with the terminology of
the database tool. Another example is the
“?_any_value ” term, which serves as a wildcard,
indicating any acceptable parameter value may occur in
the corresponding parameter position. Again, the V&V
expert had the exact same concept, but preferred a
different syntax.

• Confirmation of shared understanding: there were
some areas of shared understanding, but these had to be
confirmed, not taken for granted. A trivial example is
“AND”, which in the above is used to indicate that the
constraint [compatibility] holds if all of the clauses of
this AND hold. More interesting are the terms “meets ”
and “met-by ,” which are binary temporal relations
between intervals, drawn from the work by Allen [1].
 The net result was that the V&V expert required an

intensive session of coaching on the meaning of the
planner notations (plans and constraint language) at the
start of this pilot study, and incremental assistance at
various points throughout. Overall this did not amount to
an undue consumption of planner experts' time.
A.2. Example of Translation from Planner
Constraint to Database Query

Consider the Idle_Segment  constraint given earlier.
Its essential core is the following:

(SINGLE ((SEP_Schedul e . ..(Idle_Segment))
:compatibility_spec
(AND
 (meets (SINGLE ((SEP_Schedul e . ..

          (Thrust_Segment (?,?)))
 (met_b y ( SINGLE ( (SEP_Schedule ...

          (Thrust_Segment (?,?))))
The fragments (SINGL E ( (SEP_Schedul e . ..

introduce descriptions that are to match to activities of the
SEP scheduled in the plan. The first such description is of

an Idle_Segment  activity. For every instance of an
activity in the plan matching that description, the
constraint requires that the logical condition (AND . ..)
is true. The logical condition is the conjunct of two
clauses. The first says that the matching instance meets  a
Thrust_Segment  activity, i.e., the end-point of the
Idle_Segment  activity exactly coincides with the start
point of some Thrust_Segment  also in the plan. The
second says that the matching instance is met_by  a
Thrust_Segment  activity, i.e., the start point of the
former exactly coincides with the end point of the latter
Pictorially,
Thr ust _Segment Thr ust _SegmentI dl e_Segment

met _by meets

For translation, this is split into two separate
constraints, one for each clause of the conjunct. This
allows the checking to be conducted separately for each
conjunct, so that any anomaly in a plan can be narrowed
down as much as possible. The translated form of the first
such conjunct looks close to the following (it has been
tidied up slightly for presentation purposes):
( A ( x) ( IMPLIES
    (activity-in-plan x Idle_Segment
            SINGLE SEP_Schedule)
    ( E ( y) ( AND (activity-in-plan
       Thrust_Segment SINGLE SEP_Schedule)
                (meet s x y )))))

A and E are the database’s notations for the logical
concepts for-all and exists. IMPLIES  and AND have the
standard logical meaning. activity-in-plan  is a
ternary relation (defined for plan checking) that relates an
activity name (e.g., Thrust_Segment ) to a keyword
(e.g., SINGLE) and schedule (e.g., SEP_Schedule ).
meets  is a binary relation (again, defined for plan
checking) that relates two activities if and only if the end
point of the first coincides exactly with the start point of
the second.

For this pilot study, some of the more complex planner
constraints were also selected for hand-translation. Their
additional complexity stemmed from references to
activities’ parameter values. For example, a constraint that
says that every Max_Thrust_Time  interval whose 1st

parameter is 100  must end an
Accumulated_Thrust_Time  interval whose parameters
are respectively 100 , 0, the same value as
Max_Thrust_Time  interval’s 2nd parameter, and
WHILE_NOT_THRUSTING.
Appendix B - Details of the planchecker
development
B.1. Automating the translation from planner
constraints to database queries

The hallmark of this task was the need to deal with
many small (and to the V&V tool expert often surprising)



details. Most commonly, these were details of the plan
constraint language that the V&V tool expert had not
encountered earlier. The representative sample of
constraints hand-translated in the second pilot study did
not cover the full range of constraint language constructs.
The discovery of these came to light when the partially
developed planchecker was applied to increasingly more
of the entire set of DS-1 constraints, and to increasingly
many of the plans that had been generated. They
manifested themselves in one of three ways:
• Error (break) during translation, loading or

analysis. For example, if the constraint translator
encountered a variable in a location where it expected a
constant. Generally, these were easy to find and
understand. A break in the middle of analysis required
some simple debugging-like activity to trace back to the
underlying discrepancy. Since the database was
implemented on top of Common Lisp, the power run-
time environment available in the middle of a break
made this task fairly simple.
All these cases resulted in a simple question that the
V&V expert would ask of the spacecraft planning
experts (e.g., “what does it mean to use a variable name
as a range value where normally there is an explicit
integer?”)

• False alarms - spurious anomalies detected by
analysis. Often the automated steps would complete, but
would report a whole host of (as it turned out, spurious)
anomalies. The V&V tool expert generally interpreted a
large number of anomalies to be indicative of a flaw in
his understanding, rather than a grossly incorrect plan.
Indeed, genuine plan anomalies were so few and far
between that this was an effective working hypothesis.
The crucial issue in these cases was finding the
underlying cause of the spurious anomalies. The V&V
expert would spend time to narrow down the likely
cause of a reported anomaly. This culminated in a
question to ask of the spacecraft planning experts. For
example, suppose this was the first analysis of a plan
that exercised default interval range values for one of the
temporal relationships. An “anomaly” that could be
traced back to one of these defaults would be indicative
of a misinterpretation of what the default should be. The
V&V expert would then know to ask a specific question
about that default value.
This was a somewhat labor-intensive process for the
V&V tool expert. Its benefit was that it ensured that the
planner experts’ (very limited) time was not squandered
unnecessarily.

• False positives – failure to detect anomalies. The
surprises that were hardest to recognize and understand
were those concerning failure to detect anomalies.
The redundancy of the information in plans was
especially useful to help detect these cases. See V&V
lesson 1 (in section 5) for discussion of this issue.
Additionally, the V&V tool expert followed the
traditional approach of seeding genuine plans with
deliberate errors, and observing whether the analysis
caught them.

B.2. Structure analysis results
The need to structure analysis results to be more than

simply “pass” / “fail” was a strong theme of the
planchecker development. Some examples of the need for
this are as follows:
• All the DS-1 planner constraints take the overall

form: for every activity-1 that matches description-1
there exists an activity-2 that matches description-2. A
constraint of this form is trivially  satisfied if the plan
contains no activities matching description-1. The
planchecker separates trivial and non-trivial cases in its
reports of constraint satisfaction.

• The DS-1 planner generates plans for a segment of
the entire mission (e.g., one week). Thus a plan is
bounded within some “horizon”– it has a start and an
end. Yet, the constraints may extend across this planning
horizon. Such an instance is reported as a special kind of
constraint satisfaction in which the plan satisfies the
constraint within its horizon, but defers some residual
checking for the next plan. The details of all such
deferred checks are included within the planchecker’s
report.

• In an early version of the planner, a few of the
constraints referenced information that is not stored in
plans. In essence, this external information directed
which one of several constraints is to apply. The
planchecker’s constraint translations handle these
circumstances by checking each alternative. If all fail, it
is an anomaly. If the plan is found to satisfy one of the
alternatives, again, a special kind of constraint
satisfaction is reported, which included the deduction of
what the external information must be to direct the
choice of the satisfied constraint.

The details are domain-specific, but we see a recurring
need to make distinctions among classes of “pass” reports,
and structure the analysis results accordingly.


